
https://riptutorial.com/batch-file/example/12859/variable-substitution

batch-file Variables in Batch Files Variable

Substitution

Example#

Unlike other programming languages, in a batch file a variable is substituted by its actual

value before the batch script is run. In other words, the substitution is made when the

script is read into memory by the command processor, not when the script is later run.

This enables the use of variables as commands within the script, and as part of other

variable names in the script, etc. The "script" in this context being a line - or block - of

code, surrounded by round brackets: ().

But this behaviour does mean that you cannot change a variable's value inside a block!

SET VAR=Hello

FOR /L %%a in (1,1,2) do (

 ECHO %VAR%

 SET VAR=Goodbye

)

will print

Hello

Hello

since (as you see, when watching the script run in the command window) it is evaluated

to:

SET VAR=Hello

FOR /L %%a in (1,1,2) do (

 echo Hello

 SET VAR=Goodbye

)

In the above example, the ECHO command is evaluated as Hello when the script is read

into memory, so the script will echo Hello forever, however many passes are made

through the script.

The way to achieve the more "traditional" variable behaviour (of the variable being

expanded whilst the script is running) is to enable "delayed expansion". This involves

adding that command into the script prior to the loop instruction (usually a FOR loop, in a

batch script), and using an exclamation mark (!) instead of a percent sign (%) in the

variable's name:

setlocal enabledelayedexpansion

SET VAR=Hello

FOR /L %%a in (1,1,2) do (

 echo !VAR!

 SET VAR=Goodbye

)

endlocal

will print

Hello

Goodbye

The syntax %%a in (1,1,2) causes the loop to run 2 times: on the first occasion, the

variable bears its initial value of 'Hello', but on the second pass through the loop - having

executed the second SET instruction as the last action on the 1st pass - this has changed to

the revised value 'Goodbye'.

Advanced variable substitution

Now, an advanced technique. Using the CALL command allows the batch command

processor to expand a variable located on the same line of the script. This can deliver

multilevel expansion, by repeated CALL and modifier use.

This is useful in, for example, a FOR loop. As in the following example, where we have a

numbered list of variables:

"c:\MyFiles\test1.txt" "c:\MyFiles\test2.txt" "c:\MyFiles\test3.txt"

We can achieve this using the following FOR loop:

setlocal enabledelayedexpansion

for %%x in (%*) do (

 set /a "i+=1"

 call set path!i!=%%~!i!

 call echo %%path!i!%%

)

endlocal

Output:

c:\MyFiles\test1.txt

c:\MyFiles\test2.txt

c:\MyFiles\test3.txt

Note that the variable !i! is first expanded to its initial value, 1, then the resulting

variable, %1, is expanded to its actual value of c:\MyFiles\test1.txt. This is double

expansion of the variable i. On the next line, i is again double expanded, by use of the

CALL ECHO command together with the %% variable prefix, then printed to the screen (i.e.

displayed on screen).

On each successive pass through the loop, the initial number is increased by 1 (due to the

code i+=1). Thus it increases to 2 on the 2nd pass through the loop, and to 3 on the 3rd

pass. Thus the string echoed to the screen alters with each pass.

PDF - Download batch-file for free

